论文标题
无限(半)经典链上热力学量的有效数值评估
Efficient numerical evaluation of thermodynamic quantities on infinite (semi-)classical chains
论文作者
论文摘要
这项工作提出了一种有效的数值方法,可以通过将转移操作员方法与使用正交规则的积分内核的数值离散化,来评估(准)一维经典系统的自由能密度和相关的热力学量。对于分析核,该技术在正交点的数量中表现出指数收敛。作为示范,我们将该方法应用于经典的粒子链,半经典的非线性schrödinger方程以及圆柱晶格上的经典系统。
This work presents an efficient numerical method to evaluate the free energy density and associated thermodynamic quantities of (quasi) one-dimensional classical systems, by combining the transfer operator approach with a numerical discretization of integral kernels using quadrature rules. For analytic kernels, the technique exhibits exponential convergence in the number of quadrature points. As demonstration, we apply the method to a classical particle chain, to the semiclassical nonlinear Schrödinger equation and to a classical system on a cylindrical lattice.