论文标题

非亚伯傅立叶变换,用于椭圆形的一项杰出$ p $ - 亚种的形式

The nonabelian Fourier transform for elliptic unipotent representations of exceptional $p$-adic groups

论文作者

Ciubotaru, Dan

论文摘要

我们定义了一个椭圆形的langlands参数的涉及$ p $ p $ - 亚种子$ g $的参数,并验证当$ g $分开时,这种互动的组成与超特定的parahoric限制图的组成与Lusztig的非比较非洲傅立叶的非洲傅立叶变革相一致。这是由Lusztig最近的作品启发的,这些作品几乎是$ p $ adiC群体以及Moeglin和Waldspurger的几乎单一角色的启发。

We define an involution on the space of elliptic unipotent Langlands parameters of a reductive $p$-adic group $G$ and verify that when $G$ is split adjoint exceptional, the composition of this involution with the hyperspecial parahoric restriction map agrees with Lusztig's nonabelian Fourier transform for unipotent representations of the finite reductive quotient. This is inspired by recent works of Lusztig on the almost unipotent characters of $p$-adic groups and of Moeglin and Waldspurger on the elliptic Fourier transform of odd orthogonal groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源