论文标题

通过在线对比学习的删除感知学习

Disentangle Perceptual Learning through Online Contrastive Learning

论文作者

Mei, Kangfu, Lu, Yao, Yi, Qiaosi, Wu, Haoyu, Li, Juncheng, Huang, Rui

论文摘要

根据人类的视觉感知追求现实的结果是图像转换任务中的主要关注点。感知学习方法(例如感知损失)在此类任务上具有经验上强大的功能,但它们通常依赖于预训练的分类网络来提供功能,而这些特征不一定在对图像转换的视觉感知方面不一定是最佳的。在本文中,我们认为,在预训练的分类网络中的特征表示中,只有有限的维度与人类的视觉感知有关,而其他方面则无关紧要,尽管两者都会影响最终的图像转换结果。在这样的假设下,我们试图通过我们提出的在线对比学习将与感知相关的维度从表示形式中解脱出来。所得的网络包括训练零件和特征选择层,其次是对比度学习模块,该模块分别利用了转换的结果,目标图像和面向任务的扭曲图像作为正,负和锚定样品。对比学习旨在激活与感知相关的维度并通过使用三重态损失来抑制无关的维度,以便可以将原始表示形式分解为更好的感知质量。关于各种图像转换任务的实验证明了我们框架的优越性,从人类的视觉感知方面,使用预训练的网络和经验设计的损失来证明我们的框架与现有方法相比现有方法。

Pursuing realistic results according to human visual perception is the central concern in the image transformation tasks. Perceptual learning approaches like perceptual loss are empirically powerful for such tasks but they usually rely on the pre-trained classification network to provide features, which are not necessarily optimal in terms of visual perception of image transformation. In this paper, we argue that, among the features representation from the pre-trained classification network, only limited dimensions are related to human visual perception, while others are irrelevant, although both will affect the final image transformation results. Under such an assumption, we try to disentangle the perception-relevant dimensions from the representation through our proposed online contrastive learning. The resulted network includes the pre-training part and a feature selection layer, followed by the contrastive learning module, which utilizes the transformed results, target images, and task-oriented distorted images as the positive, negative, and anchor samples, respectively. The contrastive learning aims at activating the perception-relevant dimensions and suppressing the irrelevant ones by using the triplet loss, so that the original representation can be disentangled for better perceptual quality. Experiments on various image transformation tasks demonstrate the superiority of our framework, in terms of human visual perception, to the existing approaches using pre-trained networks and empirically designed losses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源