论文标题
弯曲时空中光线的总挠度角的光学几何定义
The optical geometry definition of the total deflection angle of a light ray in curved spacetime
论文作者
论文摘要
假设静态和球形对称的时空,我们提出了一个新颖的灯光挠度角度的概念。该概念是由两个三角形的内角总和之间的差异来定义的。其中一个三角形位于弯曲的时空上,由于引力的身体而扭曲,另一个则在其背景上。可以通过设置三个激光梁基线基线来实现定义总挠度角所需的三角形,如计划的空间任务,例如Lator,Astrod-GW和Lisa。因此,原理可以通过测量三角形的内角来测量新的总挠度角。总挠度角的新定义可以提供几何和直觉清晰的解释。提出了两个公式,以根据高斯 - 基网定理计算总挠度角。结果表明,在Schwarzschild时空的情况下,总挠度角$α_ {\ rm sch} $的表达式降低到Epstein--Shapiro的公式时,当浅射线和观察者的源位于一个不宽容的平面区域中。此外,对于Schwarzschild-de保姆的情况,总挠度角$α_ {\ rm sds} $的表达式包括Schwarzschild的零件和类似于中央质量$ M $的零件和耦合术语,以及COSMOLICY CONSMOLICAL CONSEMALIC PONSSIC PONSSIC PONSS $λ$的$ c $ { o}(λ/m)$。此外,$α_ {\ rm sds} $不包括仅以宇宙常数$λ$为特征的术语。
Assuming a static and spherically symmetric spacetime, we propose a novel concept of the total deflection angle of a light ray. The concept is defined by the difference between the sum of internal angles of two triangles; one of the triangles lies on curved spacetime distorted by a gravitating body and the other on its background. The triangle required to define the total deflection angle can be realized by setting three laser-beam baselines as in planned space missions such as LATOR, ASTROD-GW, and LISA. Accordingly, the new total deflection angle is, in principle, measurable by gauging the internal angles of the triangles. The new definition of the total deflection angle can provide a geometrically and intuitively clear interpretation. Two formulas are proposed to calculate the total deflection angle on the basis of the Gauss--Bonnet theorem. It is shown that in the case of the Schwarzschild spacetime, the expression for the total deflection angle $α_{\rm Sch}$ reduces to Epstein--Shapiro's formula when the source of a light ray and the observer are located in an asymptotically flat region. Additionally, in the case of the Schwarzschild--de Sitter spacetime, the expression for the total deflection angle $α_{\rm SdS}$ comprises the Schwarzschild-like parts and coupling terms of the central mass $m$ and the cosmological constant $Λ$ in the form of ${\cal O}(Λm)$ instead of ${\cal O}(Λ/m)$. Furthermore, $α_{\rm SdS}$ does not include the terms characterized only by the cosmological constant $Λ$.