论文标题
矩阵模型和JT重力的变形
Matrix Models and Deformations of JT Gravity
论文作者
论文摘要
最近,已经发现,JT Gravity是一种二维理论,具有散装动作$ - \ frac {1} {2} {2} \ int {\ mathrm d}^2x \ 2x \ sqrt gϕ(r+2)$,是矩阵模型,即量子系统的随机组合,而不是特定的量子系统。在本文中,我们认为JT重力的变形具有散装动作$ - \ frac {1} {2} {2} \ int {\ Mathrm d}^2x \ sqrt g(ϕr+w(x))$同样对矩阵模型。通过定义理论的路径积分的特定过程,我们确定了双基质模型的特征值的密度。如果$ w(0)= 0 $,则有一个简单的答案,否则一个相当复杂的答案。
Recently, it has been found that JT gravity, which is a two-dimensional theory with bulk action $ -\frac{1}{2}\int {\mathrm d}^2x \sqrt gϕ(R+2)$, is dual to a matrix model, that is, a random ensemble of quantum systems rather than a specific quantum mechanical system. In this article, we argue that a deformation of JT gravity with bulk action $ -\frac{1}{2}\int {\mathrm d}^2x \sqrt g(ϕR+W(ϕ))$ is likewise dual to a matrix model. With a specific procedure for defining the path integral of the theory, we determine the density of eigenvalues of the dual matrix model. There is a simple answer if $W(0)=0$, and otherwise a rather complicated answer.