论文标题

基于经验可能性的模型选择的强大一致信息标准

A Robust Consistent Information Criterion for Model Selection based on Empirical Likelihood

论文作者

Chen, Chixiang, Wang, Ming, Wu, Rongling, Li, Runze

论文摘要

用于模型选择的常规可能性信息标准取决于数据的分布假设。但是,对于在许多科学领域越来越多地可用的复杂数据,其基本分布的规范证明是具有挑战性的,并且现有标准可能是有限的,并且不足以解决各种模型选择问题。在这里,我们提出了一个基于数据驱动的经验可能性函数的强大而一致的模型选择标准。特别是,该框架采用插件估算器,可以通过求解外部估计方程(不限于经验可能性)来实现,从而避免了潜在的计算收敛问题,并允许多功能应用程序,例如广义线性模型,广义估计方程,惩罚性的回归等。我们提出的标准的表述最初是从可变选择框架下边缘可能性的渐近扩展中得出的,但更重要的是,一致的模型选择属性是在一般环境下建立的。与传统的模型选择标准相比,广泛的仿真研究证实了该提案的表现。最后,在社区研究中对动脉粥样硬化风险的应用说明了该提议的框架的实际价值。

Conventional likelihood-based information criteria for model selection rely on the distribution assumption of data. However, for complex data that are increasingly available in many scientific fields, the specification of their underlying distribution turns out to be challenging, and the existing criteria may be limited and are not general enough to handle a variety of model selection problems. Here, we propose a robust and consistent model selection criterion based upon the empirical likelihood function which is data-driven. In particular, this framework adopts plug-in estimators that can be achieved by solving external estimating equations, not limited to the empirical likelihood, which avoids potential computational convergence issues and allows versatile applications, such as generalized linear models, generalized estimating equations, penalized regressions and so on. The formulation of our proposed criterion is initially derived from the asymptotic expansion of the marginal likelihood under variable selection framework, but more importantly, the consistent model selection property is established under a general context. Extensive simulation studies confirm the out-performance of the proposal compared to traditional model selection criteria. Finally, an application to the Atherosclerosis Risk in Communities Study illustrates the practical value of this proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源