论文标题

企鹅对宽度差异的贡献和$ b_q $ - $ \ bar b_q $在订单$α_s^2 n_f $中的不对称贡献

Penguin contribution to width difference and CP asymmetry in $B_q$-$\bar B_q$ mixing at order $α_s^2 N_f$

论文作者

Asatrian, Hrachia M., Asatryan, Hrachya H., Hovhannisyan, Artyom, Nierste, Ulrich, Tumasyan, Sergey, Yeghiazaryan, Arsen

论文摘要

我们向decay矩阵元素$γ_{12}^q $提出了新的贡献。我们的新结果构成了$α_s^2 n_f $校正企鹅对Wilson系数的贡献,输入$γ_{12}^q $,并且完全依赖于魅力夸克质量。这是迈向预测CP不对称$ a _ {\ rm fs}^q $量化CP违反CP的第一步。我们发现非零魅力质量的效果相当大,我们的部分NNLO结果将NLO企鹅校正降低到$ a _ {\ rm fs}^q $降至37 \%,而$Δγ_Q$降低到$Δγ_Q$ 16 \%。我们进一步更新了$ a _ {\ rm fs}^q $的标准模型NLO预测,以及$ b_q $ eigenstates的宽度和质量差异的比率:如果我们以底部夸克的极点表示结果,我们会发现$ a _ _ _ {\ rm fs fs}^s =(\ rm fs}^s =(2.007 \ cd) $ a _ {\ rm fs}^d =( - 4.71 \ pm 0.24)\ cdot 10^{ - 4} $,$Δγ_s/δ{m} _s =(4.33 \ pm 1.26) 1.19)\ CDOT 10^{ - 3} $。在$ \ edline {\ rm ms} $中,这些数字这些数字读取$ a^s _ {\ rm fs} =(2.04 \ pm 0.11)\ cdot 10^{ - 5} $,$ a^d _ {\ rm fs} =(\ rm fs} =(-4.64 \ pm 0.25) $Δγ_s/δ{m} _s =(4.97 \ pm 1.02)\ cdot 10^{ - 3} $和$Δγ_d/δ{m} _d =(5.07 \ pm 0.96)\ cdot 10^{ - 3} $。

We present new contributions to the decay matrix element $Γ_{12}^q$ of the $B_q$-$\bar B_q$ mixing complex, where $q=d$ or $s$. Our new results constitute the order $α_s^2 N_f$ corrections to the penguin contributions to the Wilson coefficients entering $Γ_{12}^q$ with full dependence on the charm quark mass. This is the first step towards the prediction of the CP asymmetry $a_{\rm fs}^q$ quantifying CP violation in mixing at next-to-next-to-leading logarithmic order (NNLO) in quantum chromodynamics (QCD) and further improves the prediction of the width difference $ΔΓ_q$ between the two neutral-meson eigenstates. We find a sizable effect from the non-zero charm mass and our partial NNLO result decreases the NLO penguin corrections to $a_{\rm fs}^q$ by 37\% and those to $ΔΓ_q$ by 16\%. We further update the Standard-Model NLO predictions for $a_{\rm fs}^q$ and the ratio of the width and mass differences of the $B_q$ eigenstates: If we express the results in terms of the pole mass of the bottom quark we find $a_{\rm fs}^s=(2.07 \pm 0.10)\cdot 10^{-5}$, $a_{\rm fs}^d=(-4.71 \pm 0.24)\cdot 10^{-4}$, $ΔΓ_s/Δ{M}_s = (4.33 \pm 1.26)\cdot 10^{-3}$, and $ΔΓ_d/Δ{M}_d = (4.48 \pm 1.19)\cdot 10^{-3}$. In the $\overline{\rm MS}$ scheme these numbers read $a^s_{\rm fs} =(2.04 \pm 0.11)\cdot 10^{-5}$, $a^d_{\rm fs} = (-4.64 \pm 0.25)\cdot 10^{-4}$, $ΔΓ_s/Δ{M}_s = (4.97 \pm 1.02)\cdot 10^{-3}$, and $ΔΓ_d/Δ{M}_d = (5.07 \pm 0.96)\cdot 10^{-3}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源