论文标题
有效的空间自适应卷积和相关性
Efficient Spatially Adaptive Convolution and Correlation
论文作者
论文摘要
卷积和相关性的快速方法是计算机视觉和图形中各种应用的基础,包括有效的过滤,分析和仿真。但是,标准卷积和相关性固有地限于固定过滤器:如果不牺牲有效的计算,则无法进行空间适应。在早期工作中,弗里曼(Freeman)和阿德尔森(Adelson)展示了可通道的过滤器如何解决此限制,从而为滤波器通过信号时旋转滤镜提供了一种方法。在这项工作中,我们提供了一个通用的,表示理论的框架,允许将线性变化的线性变换应用于滤波器。该框架允许有效地实施转换组(例如旋转(以2D和3D)和比例)的转换组的扩展卷积和相关性,并为先前的方法提供了新的解释,包括可进入的过滤器和广义的Hough变换。我们向图案匹配,图像特征描述,向量场可视化和自适应图像过滤提供了应用程序。
Fast methods for convolution and correlation underlie a variety of applications in computer vision and graphics, including efficient filtering, analysis, and simulation. However, standard convolution and correlation are inherently limited to fixed filters: spatial adaptation is impossible without sacrificing efficient computation. In early work, Freeman and Adelson have shown how steerable filters can address this limitation, providing a way for rotating the filter as it is passed over the signal. In this work, we provide a general, representation-theoretic, framework that allows for spatially varying linear transformations to be applied to the filter. This framework allows for efficient implementation of extended convolution and correlation for transformation groups such as rotation (in 2D and 3D) and scale, and provides a new interpretation for previous methods including steerable filters and the generalized Hough transform. We present applications to pattern matching, image feature description, vector field visualization, and adaptive image filtering.