论文标题

冲击压缩黄金中相变的原子过渡机制,深厚的潜力揭示了

Atomistic Mechanism of Phase Transition in Shock Compressed Gold Revealed by Deep Potential

论文作者

Chen, Bo, Zeng, Qiyu, Wang, Han, Zhang, Shen, Kang, Dongdong, Lu, Denghui, Dai, Jiayu

论文摘要

对快速压缩的材料响应的详细理解是具有挑战性和苛刻的。例如,动态压缩下的元素金表现出复杂的相变,在实验和理论研究之间存在一些较大差异。在这里,我们将大规模的分子动力学模拟结合在一起,并具有深厚的潜力,以阐明来自原子水平的金的动态压缩过程。通过准确再现金密度功能理论计算的自由能表面,从环境条件到15500 K和500 GPA来构建电势。在此框架内,我们将模拟扩展到200000个原子大小,并发现与先前的计算相比,从面部中心立方(FCC)到体内以身体为中心(BCC)的相变压力阈值要低得多。此外,过渡压力强烈取决于冲击方向,即(100)方向为159 GPA和(110)方向的219 GPA。最重要的是,精确的原子观点表明,令人震惊的BCC结构包含了中等范围和短期订单的独特特征,在这里被称为疾病。我们提出了一个模型,并证明疾病的存在显着降低了震惊结构的吉布斯自由能,因此导致相变压力的降低。本研究为在极端条件下的结构动态提供了新的途径。

A detailed understanding of the material response to rapid compression is challenging and demanding. For instance, the element gold under dynamic compression exhibits complex phase transformations where there exist some large discrepancies between experimental and theoretical studies. Here, we combined large-scale molecular dynamics simulations with a deep potential to elucidate the dynamic compression processes of gold from an atomic level. The potential is constructed by accurately reproducing the free energy surfaces of density-functional-theory calculations for gold, from ambient conditions to 15 500 K and 500 GPa. Within this framework, we extend the simulations up to 200 000 atoms size, and found a much lower pressure threshold for phase transitioning from face-centered cubic (FCC) to body-centered (BCC), as compared to previous calculations. Furthermore, the transition pressure is strongly dependent on the shock direction, namely 159 GPa for (100) orientation and 219 GPa for (110) orientation, respectively. Most importantly, the accurate atomistic perspective presents that the shocked BCC structure contains unique features of medium-range and short-range orders, which is named disorders here. We propose a model and demonstrate that the existence of disorders significantly reduces the Gibbs free energies of shocked structures, therefore leading to the lowering of the phase transition pressure. The present study provides a new path to understand the structure dynamics under extreme conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源