论文标题
通用泰勒系列有关规定的子序列
Universal Taylor series with respect to a prescribed subsequence
论文作者
论文摘要
对于holomorthic函数$ f $ in Open Unit Disc $ \ Mathbb {D} $和$ζ\ in \ Mathbb {d} $,$ s_n(f,ζ)$表示$ f $ $ f $ at $ζ$ $ f $的$ n $ th $ n $ thaul-thoptial-th $ n $ the。给定越来越多的正整数顺序$μ=(μ_n)$,我们考虑类$ \ nathcal {u}(\ Mathbb {d},ζ)$(wesp。 $ \ {s_n(f,ζ):n = 1,2,\ dots \} $(resp。$ \ {s_ {s_ {μ_n}(f,ζ):n = 1,2,\ dots \} $)近似于所有多项式在compact $ k \ k \ sebset \ sebset \ sex z \ in z z \ in c \ in c \ in s sem ar of All dolynomials上Z \ vert \ geq 1 \} $具有连接的补充。我们表明,当且仅当$ \ limsup_n \ left(\ frac {μ_{n+1}}} {μ_n} \ right)<+\ infty $时。本着同样的精神,我们证明,对于$ζ\ ne 0,$,我们具有平等$ \ Mathcal {u}^{(μ)}(\ Mathbb {d},ζ)= \ Mathcal {u}^{u}^{(μ)}(μ)}(\ Mathbb {\ Mathbb {d},if和if if和if if和if if和if if和if If if if和if If If if if和if If If if和if $ \ limsup_n \ left(\ frac {μ_{n+1}}} {μ_n} \ right)<+\ infty $。最终,我们处理了真正的通用泰勒系列案例。
For a holomorphic function $f$ in the open unit disc $\mathbb{D}$ and $ζ\in\mathbb{D}$, $S_n(f,ζ)$ denotes the $n$-th partial sum of the Taylor development of $f$ at $ζ$. Given an increasing sequence of positive integers $μ=(μ_n)$, we consider the classes $\mathcal{U}(\mathbb{D},ζ)$ (resp. $\mathcal{U}^{(μ)}(\mathbb{D},ζ)$) of such functions $f$ such that the partial sums $\{S_n(f,ζ):n=1,2,\dots\}$ (resp. $\{S_{μ_n}(f,ζ):n=1,2,\dots\}$) approximate all polynomials uniformly on the compact sets $K\subset\{z\in\mathbb{C}:\vert z\vert\geq 1\}$ with connected complement. We show that these two classes of universal Taylor series coincide if and only if $\limsup_n\left(\frac{μ_{n+1}}{μ_n}\right)<+\infty$. In the same spirit, we prove that, for $ζ\ne 0,$ we have the equality $\mathcal{U}^{(μ)}(\mathbb{D},ζ)=\mathcal{U}^{(μ)}(\mathbb{D},0)$ if and only if $\limsup_n\left(\frac{μ_{n+1}}{μ_n}\right)<+\infty$. Finally we deal with the case of real universal Taylor series.