论文标题
在$(λ,μ)$ - 恩格尔集团上的课程
On $(λ,μ)$-classes on the Engel group
论文作者
论文摘要
本说明的目的是比较海森伯格和恩格尔组上符号伪差分的属性;分别由2步和三步组成的尼尔利组。在这里,我们提供了对结构和符号积分的初步分析,其中符号由恩格尔组的$(λ,μ)$参数,而对于海森伯格组的情况,我们回想起符号的$λ$ classes of符号的类似结果。
The purpose of this note is to compare the properties of the symbolic pseudo-differential calculus on the Heisenberg and on the Engel groups; nilpotent Lie groups of 2-step and 3-step, respectively. Here we provide a preliminary analysis of the structure and of the symbolic calculus with symbols parametrized by $(λ,μ)$ on the Engel group, while for the case of the Heisenberg group we recall the analogous results on the $λ$-classes of symbols.