论文标题
分段线性接口构建问题及其在曲率计算中的应用解决方案的分析解决方案
Analytic Solution to the Piecewise Linear Interface Construction Problem and its Application in Curvature Calculation for Volume-of-Fluid Simulation Codes
论文作者
论文摘要
自1984年以来,在文献中,平面立方体的交集问题一直存在于文献中,从那以后,在计算流体动力学模拟代码中,它一直用作分段线性界面构建(PLIC)的一部分。在许多情况下,PLIC是有关计算时间的这些模拟的瓶颈,因此对平面立方体相交的更快的分析解决方案将大大减少计算时间的时间。我们得出了所有相交情况的分析解决方案,并将其与Scardovelli和Zaleski的先前解决方案进行比较(Ruben scardovelli和Stephane Zaleski。小优化以减少算术操作和分支。然后,我们将有关计算时间和准确性的比较扩展,以包括两种不同的迭代解决方案。我们发现,最佳选择取决于所使用的硬件平台:在CPU上,牛顿 - 拉夫森(Newton-Raphson)的矢量化最快,而分析解决方案的表现更好。原因是矢量化指令集不包括分析解决方案中使用的三角函数。在GPU上,最快的方法是我们的分析SZ解决方案的优化版本。我们最终提供了有关PLIC的应用之一:用于自由表面流体模拟的流体量模型的应用:曲率计算,并结合了晶格Boltzmann方法。
The plane-cube intersection problem has been around in literature since 1984 and iterative solutions to it have been used as part of piecewise linear interface construction (PLIC) in computational fluid dynamics simulation codes ever since. In many cases, PLIC is the bottleneck of these simulations regarding compute time, so a faster, analytic solution to the plane-cube intersection would greatly reduce compute time for such simulations. We derive an analytic solution for all intersection cases and compare it to the one previous solution from Scardovelli and Zaleski (Ruben Scardovelli and Stephane Zaleski. "Analytical relations connecting linear interfaces and volume fractions in rectangular grids". In: Journal of Computational Physics 164.1 (2000), pp. 228-237.), which we further improve to include edge cases and micro-optimize to reduce arithmetic operations and branching. We then extend our comparison regarding compute time and accuracy to include two different iterative solutions as well. We find that the best choice depends on the employed hardware platform: on the CPU, Newton-Raphson is fastest with vectorization while analytic solutions perform better without. The reason for this is that vectorization instruction sets do not include trigonometric functions as used in the analytic solutions. On the GPU, the fastest method is our optimized version of the analytic SZ solution. We finally provide details on one of the applications of PLIC: curvature calculation for the Volume-of-Fluid model used for free surface fluid simulations in combination with the lattice Boltzmann method.