论文标题
通过表面化学官能化对烟雾二氧化硅纳米颗粒之间的界面热传输调节,以进行晚期热绝缘
Modulation of interfacial thermal transport between fumed silica nanoparticles by surface chemical functionalization for advanced thermal insulation
论文作者
论文摘要
由于高度多孔纳米复合材料中的固态热传输很大程度上取决于组成纳米材料之间的热边界电导(TBC),因此对TBC的进一步抑制对于改善热绝缘子的性能很重要。在这里,我们通过冲压烟雾二氧化硅纳米颗粒制造的纳米复合材料,通过硅烷偶联方法对烟雾二氧化硅纳米颗粒进行了多种表面功能化,并研究了对导热率(KM)的影响。在大气和真空条件下,在0.2 g/cm3的材料密度下,二氧化硅纳米复合材料的KM约为20和9 mW/m/k,分别为0.2 g/cm3,而没有表面官能化,并且实验结果表明可以根据分子的化学结构调节KM。使用最佳长度的线性烷基链的表面修饰可显着抑制KM约30%,并且使用红外粘液剂可以进一步增强抑制至约50%。发现抑制的大小敏感取决于末端链的长度。该幅度也与化学结构中的反应性硅醇基团的数量有关,在化学结构中,用氟化合物的表面修饰给出了最大的抑制作用。表面疏水性通过对TBC的重大抑制作用,值得隔热,这可能是通过减少否则将用作界面上的热传导通道的水分子。另一方面,当链长度长时,通过增强的声子通过硅烷耦合分子来抵消抑制作用,该硅烷偶联分子随链长而生长。这是由分析模型支持的,并呈现仿真结果,从而预测了最佳的化学结构,以获得更好的热绝缘。
Since solid-state heat transport in a highly porous nanocomposite strongly depends on the thermal boundary conductance (TBC) between constituent nanomaterials, further suppression of the TBC is important for improving performance of thermal insulators. Here, targeting a nanocomposite fabricated by stamping fumed silica nanoparticles, we perform a wide variety of surface functionalization on fumed silica nanoparticles by silane coupling method and investigate the impact on the thermal conductivity (Km). The Km of the silica nanocomposite is approximately 20 and 9 mW/m/K under atmospheric and vacuum condition at the material density of 0.2 g/cm3 without surface functionalization, respectively, and the experimental results indicate that the Km can be modulated depending on the chemical structure of molecules. The surface modification with a linear alkyl chain of optimal length significantly suppresses Km by approximately 30%, and the suppression can be further enhanced to approximately 50% with the infrared opacifier. The magnitude of suppression was found to sensitively depend on the length of terminal chain. The magnitude is also related to the number of reactive silanol groups in the chemical structure, where the surface modification with fluorocarbon gives the largest suppression. The surface hydrophobization merits thermal insulation through significant suppression of the TBC, presumably by reducing the water molecules that otherwise would serve as heat conduction channels at the interface. On the other hand, when the chain length is long, the suppression is counteracted by the enhanced phonon transmission through the silane coupling molecules that grows with the chain length. This is supported by the analytical model and present simulation results, leading to predict the optimal chemical structure for better thermal insulation.