论文标题

iffDetector:用于对象检测的推理感知功能过滤

iffDetector: Inference-aware Feature Filtering for Object Detection

论文作者

Mao, Mingyuan, Tian, Yuxin, Zhang, Baochang, Ye, Qixiang, Liu, Wanquan, Guo, Guodong, Doermann, David

论文摘要

现代CNN基于CNN的对象检测器将重点放在训练过程中的功能配置上,但在推理过程中通常忽略了功能优化。在本文中,我们提出了一种新的功能优化方法,以增强特征并抑制训练和推理阶段的背景噪声。我们引入了一个通用的推理特征过滤(IFF)模块,该模块可以很容易地与现代检测器结合使用,从而导致我们的IFFDetector。与传统的开环特征计算方法没有反馈不同,IFF模块通过利用高级语义来增强卷积特征来执行闭环优化。通过应用傅立叶变换分析,我们证明了IFF模块是一种负面反馈,理论上可以保证特征学习的稳定性。 IFF可以以插件的方式与基于CNN的对象检测器融合,并以微不足道的计算成本开销。 PASCAL VOC和MS COCO数据集的实验表明,我们的IFFDETECTOR始终以https:///github.com/Anonymouseus202020202020new/iffdetector}匿名提供了大量的Margins \ footNote {测试代码和模型的大量最佳方法}。

Modern CNN-based object detectors focus on feature configuration during training but often ignore feature optimization during inference. In this paper, we propose a new feature optimization approach to enhance features and suppress background noise in both the training and inference stages. We introduce a generic Inference-aware Feature Filtering (IFF) module that can easily be combined with modern detectors, resulting in our iffDetector. Unlike conventional open-loop feature calculation approaches without feedback, the IFF module performs closed-loop optimization by leveraging high-level semantics to enhance the convolutional features. By applying Fourier transform analysis, we demonstrate that the IFF module acts as a negative feedback that theoretically guarantees the stability of feature learning. IFF can be fused with CNN-based object detectors in a plug-and-play manner with negligible computational cost overhead. Experiments on the PASCAL VOC and MS COCO datasets demonstrate that our iffDetector consistently outperforms state-of-the-art methods by significant margins\footnote{The test code and model are anonymously available in https://github.com/anonymous2020new/iffDetector }.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源