论文标题

光谱演化具有近似特征值轨迹的链接预测

Spectral Evolution with Approximated Eigenvalue Trajectories for Link Prediction

论文作者

Romero, Miguel, Finke, Jorge, Rocha, Camilo, Tobón, Luis

论文摘要

光谱演化模型旨在根据邻接矩阵的特征值分解来表征大型网络的增长(即它们为建立新边缘的发展方式)。它假设虽然特征向量保持恒定,但特征值随着时间的推移会以可预测的方式发展。本文扩展了模型的原始公式。 首先,它提出了一种基于瑞利商的特征值的光谱演化近似的方法。 其次,它提出了一种算法来通过仅推断其近似值的一小部分来估计特征值的演变。 拟议的模型用于表征提及用户网络的网络,这些网络发布了推文,其中包括2017年8月至2018年8月在哥伦比亚最受欢迎的政治主题标签(这一时期结束了哥伦比亚革命武装力量的裁军)。为了评估光谱演化模型类似这些网络的程度,实现了基于学习算法(即推断和回归)和图形内核的链接预测方法。实验结果表明,部署在近似轨迹上的学习算法优于通常的内核和外推方法,可以预测新边缘的形成。

The spectral evolution model aims to characterize the growth of large networks (i.e., how they evolve as new edges are established) in terms of the eigenvalue decomposition of the adjacency matrices. It assumes that, while eigenvectors remain constant, eigenvalues evolve in a predictable manner over time. This paper extends the original formulation of the model twofold. First, it presents a method to compute an approximation of the spectral evolution of eigenvalues based on the Rayleigh quotient. Second, it proposes an algorithm to estimate the evolution of eigenvalues by extrapolating only a fraction of their approximated values. The proposed model is used to characterize mention networks of users who posted tweets that include the most popular political hashtags in Colombia from August 2017 to August 2018 (the period which concludes the disarmament of the Revolutionary Armed Forces of Colombia). To evaluate the extent to which the spectral evolution model resembles these networks, link prediction methods based on learning algorithms (i.e., extrapolation and regression) and graph kernels are implemented. Experimental results show that the learning algorithms deployed on the approximated trajectories outperform the usual kernel and extrapolation methods at predicting the formation of new edges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源