论文标题

自适应县级Covid-19预测模型:分析和改进

Adaptive County Level COVID-19 Forecast Models: Analysis and Improvement

论文作者

Doe, Stewart W, Seekins, Tyler Russell, Fitzpatrick, David, Blanchard, Dawsin, Sekeh, Salimeh Yasaei

论文摘要

准确地预测县级Covid-19确认的病例对于优化医疗资源至关重要。预测新兴的暴发构成了一个特殊的挑战,因为许多现有的预测技术从历史季节的趋势中学到了。具有基于LSTM的细胞的复发性神经网络(RNN)是模型的逻辑选择,因为它们可以学习时间动态。在本文中,我们适应了Wang等人中提出的州和县一级流感模型Tdefsi-Lonly。 [L2020]到国家和县一级COVID-19数据。我们表明,该模型预测当前的大流行。我们分析了与正则化技术组合的TDEFSI-Lonly模型的预测能力。对TDEFSI-Lonly模型的有效培训需要数据增强,为了克服这一挑战,我们利用了SEIR模型,并向该模型提供了县间混合扩展,以模拟足够的培训数据。此外,我们提出了一种替代预测模型,即{\ IT县级流行病学推断复发网络}(\ alg {}),该网络在国家确认的情况下对LSTM骨架进行训练,以了解低维度的时间模式,以了解低维度的时间模式,并利用时间分布式层来学习每天的县确认案例,每天都会改变两周的时间。我们表明,使用Cleir-Net模型进行的最好,最差和中位州的预测分别是纽约,南卡罗来纳州和蒙大拿州。

Accurately forecasting county level COVID-19 confirmed cases is crucial to optimizing medical resources. Forecasting emerging outbreaks pose a particular challenge because many existing forecasting techniques learn from historical seasons trends. Recurrent neural networks (RNNs) with LSTM-based cells are a logical choice of model due to their ability to learn temporal dynamics. In this paper, we adapt the state and county level influenza model, TDEFSI-LONLY, proposed in Wang et a. [l2020] to national and county level COVID-19 data. We show that this model poorly forecasts the current pandemic. We analyze the two week ahead forecasting capabilities of the TDEFSI-LONLY model with combinations of regularization techniques. Effective training of the TDEFSI-LONLY model requires data augmentation, to overcome this challenge we utilize an SEIR model and present an inter-county mixing extension to this model to simulate sufficient training data. Further, we propose an alternate forecast model, {\it County Level Epidemiological Inference Recurrent Network} (\alg{}) that trains an LSTM backbone on national confirmed cases to learn a low dimensional time pattern and utilizes a time distributed dense layer to learn individual county confirmed case changes each day for a two weeks forecast. We show that the best, worst, and median state forecasts made using CLEIR-Net model are respectively New York, South Carolina, and Montana.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源