论文标题
在大型HST调查(WISP)中通过监督机器学习识别单光谱线:欧几里得和WFIRST的试点研究
Identification of single spectral lines through supervised machine learning in a large HST survey (WISP): a pilot study for Euclid and WFIRST
论文作者
论文摘要
未来的调查专注于理解黑暗能量的性质(例如,欧几里得和WFIRST)将涵盖近乎IR无slitss slit的光谱法中的大量分数。这些调查将检测到大量的星系,这些星系在覆盖的光谱范围内只有一条发射线。为了最大程度地提高这些任务的科学回报,必须正确识别单个发射线。使用监督的机器学习方法,我们对从WFC3 IR光谱平行调查(WISP)提取的单个发射线的样本进行了分类,这是与未来无slitless sliteless Surveys的最接近类似物之一。我们的自动软件将SED拟合策略与其他独立信息来源集成在一起。我们对其进行了校准,并在检测到多条线的安全识别对象的“金”样本上进行了测试。该算法以82.6%的精度正确地对真实发射线进行了分类,而仅由于可用的光度数据(<= 6个频段),因此仅SED拟合技术的准确性很低(〜50%)。尽管不是专门为欧几里得和WFIRST调查设计的,但该算法代表了在这些未来任务中要使用的类似算法的重要先驱。
Future surveys focusing on understanding the nature of dark energy (e.g., Euclid and WFIRST) will cover large fractions of the extragalactic sky in near-IR slitless spectroscopy. These surveys will detect a large number of galaxies that will have only one emission line in the covered spectral range. In order to maximize the scientific return of these missions, it is imperative that single emission lines are correctly identified. Using a supervised machine-learning approach, we classified a sample of single emission lines extracted from the WFC3 IR Spectroscopic Parallel survey (WISP), one of the closest existing analogs to future slitless surveys. Our automatic software integrates a SED fitting strategy with additional independent sources of information. We calibrated it and tested it on a "gold" sample of securely identified objects with multiple lines detected. The algorithm correctly classifies real emission lines with an accuracy of 82.6%, whereas the accuracy of the SED fitting technique alone is low (~50%) due to the limited amount of photometric data available (<=6 bands). While not specifically designed for the Euclid and WFIRST surveys, the algorithm represents an important precursor of similar algorithms to be used in these future missions.