论文标题

$η/s $的温度依赖性强烈相互作用的问题:状态方程的影响和$(η/s)(t)$的参数形式

Temperature dependence of $η/s$ of strongly interacting matter: effects of the equation of state and the parametric form of $(η/s)(T)$

论文作者

Auvinen, Jussi, Eskola, Kari J., Huovinen, Pasi, Niemi, Harri, Paatelainen, Risto, Petreczky, Peter

论文摘要

我们使用分段线性参数化研究了剪切粘度对熵密度比$η/s $的温度依赖性。 To determine the optimal values of the parameters and the associated uncertainties, we perform a global Bayesian model-to-data comparison on Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV and Pb+Pb collisions at $2.76$ TeV and $5.02$ TeV, using a 2+1D hydrodynamical model with the EKRT initial state.我们根据当代晶格结果和强子共振气体提供了三个新的参数化(EOS),并使用它们以及广泛使用的$ S95P $参数化,以探索由于选择状态方程而导致的分析中的不确定性。我们发现,$η/s $在温度范围内最受限制$ t \ t \ $ 220 $ mev,当考虑到90%可靠的间隔时,所有EOSS $ 0.08 <η/s <0.23 $。在此温度范围内,EOS参数化对喜欢的$η/s $值只有小$ \%$ $效应,该$ h/s $值小于$ \ \ 30 \%$使用单个EOS参数化的分析的不确定性。我们对$(η/s)(t)$的参数化导致$η/s $的最小值略大于先前使用的参数化。当我们将参数化限制为模仿先前使用的参数化时,我们的偏爱值会降低,并且差异在统计上无关紧要。

We investigate the temperature dependence of the shear viscosity to entropy density ratio $η/s$ using a piecewise linear parametrization. To determine the optimal values of the parameters and the associated uncertainties, we perform a global Bayesian model-to-data comparison on Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV and Pb+Pb collisions at $2.76$ TeV and $5.02$ TeV, using a 2+1D hydrodynamical model with the EKRT initial state. We provide three new parametrizations of the equation of state (EoS) based on contemporary lattice results and hadron resonance gas, and use them and the widely used $s95p$ parametrization to explore the uncertainty in the analysis due to the choice of the equation of state. We found that $η/s$ is most constrained in the temperature range $T\approx 150$--$220$ MeV, where, for all EoSs, $0.08 < η/s < 0.23$ when taking into account the 90% credible intervals. In this temperature range the EoS parametrization has only a small $\approx 10\%$ effect on the favored $η/s$ value, which is less than the $\approx 30\%$ uncertainty of the analysis using a single EoS parametrization. Our parametrization of $(η/s)(T)$ leads to a slightly larger minimum value of $η/s$ than the previously used parametrizations. When we constrain our parametrization to mimic the previously used parametrizations, our favored value is reduced, and the difference becomes statistically insignificant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源