论文标题
使用图理论和社交媒体数据评估沿海地区文化生态系统服务:方法开发和应用
Using graph theory and social media data to assess cultural ecosystem services in coastal areas: Method development and application
论文作者
论文摘要
社交媒体(SM)数据的使用已成为评估文化生态系统服务(CES)的有前途的工具。大多数研究都集中在使用单个SM平台以及对照片内容的分析以评估CES的需求。在这里,我们通过应用图理论网络分析(GTNA)在与SM帖子相关的主题标签上应用SM数据介绍了一种用于评估CES的新方法,并将其与照片内容分析进行了比较。我们在两个全球已知的案例研究区域,即大堡礁,加拉帕戈斯群岛和复活节岛上应用了两个SM平台Instagram和Twitter上提出的方法。我们的结果表明,通过图理论对主题标签的分析提供了与CES提供评估和CES提供商识别的照片内容分析相似的功能。更重要的是,GTNA在识别与自然相关的关系价值观和eudaimonic方面提供了更大的功能,对于照片内容分析而言难以捉摸的方面。此外,GTNA有助于减少与照片内容分析相关的口译员的偏差,因为GTNA基于用户本身提供的标签。该研究还强调了考虑来自不同社交媒体平台的数据的重要性,因为这些平台的用户类型和信息可以显示不同的CES属性。应用GTNA应用涉及的应用易于应用和简短的计算处理时间,使其成为一种具有成本效益的方法,具有应用于大型地理量表的潜力。
The use of social media (SM) data has emerged as a promising tool for the assessment of cultural ecosystem services (CES). Most studies have focused on the use of single SM platforms and on the analysis of photo content to assess the demand for CES. Here, we introduce a novel methodology for the assessment of CES using SM data through the application of graph theory network analyses (GTNA) on hashtags associated to SM posts and compare it to photo content analysis. We applied the proposed methodology on two SM platforms, Instagram and Twitter, on three worldwide known case study areas, namely Great Barrier Reef, Galapagos Islands and Easter Island. Our results indicate that the analysis of hashtags through graph theory offers similar capabilities to photo content analysis in the assessment of CES provision and the identification of CES providers. More importantly, GTNA provides greater capabilities at identifying relational values and eudaimonic aspects associated to nature, elusive aspects for photo content analysis. In addition, GTNA contributes to the reduction of the interpreter's bias associated to photo content analyses, since GTNA is based on the tags provided by the users themselves. The study also highlights the importance of considering data from different social media platforms, as the type of users and the information offered by these platforms can show different CES attributes. The ease of application and short computing processing times involved in the application of GTNA makes it a cost-effective method with the potential of being applied to large geographical scales.