论文标题
用单个粒子构建多个访问通道
Building Multiple Access Channels with a Single Particle
论文作者
论文摘要
多个访问频道描述了一个情况,在这种情况下,多个发件人试图使用某种物理介质将消息转发给单个接收器。在本文中,我们考虑了这种介质仅由单个经典或量子粒子组成的方案。在量子情况下,可以在叠加状态下制备粒子,从而允许更丰富的编码策略家族。为了精确地进行量子和经典通道之间的比较,我们引入了一个操作框架,其中所有可能的编码策略都消耗了一个粒子。我们将此框架应用于N端口干涉仪实验,在该实验中,每个方控制粒子可以穿越的路径。当用于通信目的时,此设置体现了用单个粒子构建的多个访问通道(MAC)。 我们提供了可以从单个粒子构建的N派对经典MAC的完整表征,并且我们表明每个非经典粒子都可以在经典集外产生MAC。为了进一步区分单个经典和量子粒子的能力,我们放宽了位置约束,并允许按1 <k <= n派对的子集进行关节编码。这会产生一个更丰富的古典Mac家族,我们的多层尺寸是我们计算的。我们将“广义指纹不平等”确定为该多层的有效方面,并且我们验证即使在k = n-1时,分布在n个分离各方之间的量子粒子也可能违反这种不平等。在单粒子框架和多层相干理论之间达到联系。我们表明,每个具有K级相干性的纯状态可以以半设备独立的方式检测到,唯一的假设是颗粒数的保护。
A multiple access channel describes a situation in which multiple senders are trying to forward messages to a single receiver using some physical medium. In this paper we consider scenarios in which this medium consists of just a single classical or quantum particle. In the quantum case, the particle can be prepared in a superposition state thereby allowing for a richer family of encoding strategies. To make the comparison between quantum and classical channels precise, we introduce an operational framework in which all possible encoding strategies consume no more than a single particle. We apply this framework to an N-port interferometer experiment in which each party controls a path the particle can traverse. When used for the purpose of communication, this setup embodies a multiple access channel (MAC) built with a single particle. We provide a full characterization of the N-party classical MACs that can be built from a single particle, and we show that every non-classical particle can generate a MAC outside the classical set. To further distinguish the capabilities of a single classical and quantum particle, we relax the locality constraint and allow for joint encodings by subsets of 1<K<= N parties. This generates a richer family of classical MACs whose polytope dimension we compute. We identify a "generalized fingerprinting inequality" as a valid facet for this polytope, and we verify that a quantum particle distributed among N separated parties can violate this inequality even when K=N-1. Connections are drawn between the single-particle framework and multi-level coherence theory. We show that every pure state with K-level coherence can be detected in a semi-device independent manner, with the only assumption being conservation of particle number.