论文标题
自动植物的基线方法:MICCAI 2020颅植入式设计挑战
A Baseline Approach for AutoImplant: the MICCAI 2020 Cranial Implant Design Challenge
论文作者
论文摘要
在这项研究中,我们提出了一种自动植物的基线方法(https://autoimplant.grand-challenge.org/) - 颅植入设计挑战,正如组织者所建议的那样,可以将其作为大量的形状学习任务进行表述。在此任务中,有缺陷的头骨,完整的头骨和颅骨植入物被表示为二进制体素电网。为了完成此任务,可以直接从有缺陷的头骨中重建植入物,也可以通过在有缺陷的头骨和完整的头骨之间获得差异而获得。在后一种情况下,必须重建一个完整的头骨,鉴于有缺陷的头骨,这定义了体积的形状完成问题。我们执行此任务的基线方法基于以前的配方,即对深层神经网络进行训练,以直接从有缺陷的头骨中预测植入物。该方法分为两个步骤生成高质量的植入物:首先,编码器 - 模型网络从下采样,有缺陷的头骨中学习了植入物的粗表示;粗植入物仅用于在原始高分辨率头骨中生成缺陷区域的边界框。其次,对另一个编码器 - 码头网络进行了训练,从而从边界区域生成了细植入物。在测试集中,所提出的方法达到的平均骰子相似性评分(DSC)为0.8555,而Hausdorff距离(HD)为5.1825 mm。该代码可在https://github.com/jianningli/autoimplant上公开获取。
In this study, we present a baseline approach for AutoImplant (https://autoimplant.grand-challenge.org/) - the cranial implant design challenge, which, as suggested by the organizers, can be formulated as a volumetric shape learning task. In this task, the defective skull, the complete skull and the cranial implant are represented as binary voxel grids. To accomplish this task, the implant can be either reconstructed directly from the defective skull or obtained by taking the difference between a defective skull and a complete skull. In the latter case, a complete skull has to be reconstructed given a defective skull, which defines a volumetric shape completion problem. Our baseline approach for this task is based on the former formulation, i.e., a deep neural network is trained to predict the implants directly from the defective skulls. The approach generates high-quality implants in two steps: First, an encoder-decoder network learns a coarse representation of the implant from down-sampled, defective skulls; The coarse implant is only used to generate the bounding box of the defected region in the original high-resolution skull. Second, another encoder-decoder network is trained to generate a fine implant from the bounded area. On the test set, the proposed approach achieves an average dice similarity score (DSC) of 0.8555 and Hausdorff distance (HD) of 5.1825 mm. The code is publicly available at https://github.com/Jianningli/autoimplant.