论文标题

驱动的谐波振荡器的动力学耦合到随机场中的成对相互作用的旋转

The dynamics of a driven harmonic oscillator coupled to pairwise interacting Ising spins in random fields

论文作者

Zech, Paul, Otto, Andreas, Radons, Günter

论文摘要

通常,我们对与复杂滞后的动力系统感兴趣。因此,作为第一步,我们最近研究了一个定期驱动的阻尼谐波振荡器的动力学,并在随机场中耦合到独立的Ising旋转。尽管这样的系统不会产生磁滞,但我们展示了如何表征这种分段平滑系统的动力学,尤其是在大量旋转的情况下[P. Zech,A。Otto和G. Radons,物理。 Rev. E 101,042217(2020)]。在本文中,我们将模型扩展到旋转二聚体,从而将模型扩展到成对相互作用的自旋。我们显示在哪些情况下,两次相互作用的旋转可以显示基本的滞后,我们与Preisach模型提供了联系,这使我们可以考虑无限数量的自旋对。这种热力学极限使我们进入了一个动力学系统,其形式具有额外的滞后力。通过使用一般混乱理论的方法,分段平滑的系统理论和统计数据,我们通过计算分叉图,Lyapunov指数,分形维度和自我呈现特性来研究动态系统的混乱行为,并通过计算分叉图,Lyapunov指数,lyapunov指数,通过计算大量的自旋行为。我们发现分形尺寸和磁化强度通常不是自动平均数量。我们显示,针对大量旋转的分段平滑系统的动力学特性与系统的热力学极限有所不同。

In general we are interested in dynamical systems coupled to complex hysteresis. Therefore as a first step we investigated recently the dynamics of a periodically driven damped harmonic oscillator coupled to independent Ising spins in a random field. Although such a system does not produce hysteresis, we showed how to characterize the dynamics of such a piecewise-smooth system, especially in the case of a large number of spins [P. Zech, A. Otto, and G. Radons, Phys. Rev. E 101, 042217 (2020)]. In this paper we extend our model to spin dimers, thus pairwise interacting spins. We show in which cases two interacting spins can show elementary hysteresis and we give a connection to the Preisach model, which allows us to consider an infinite number of spin-pairs. This thermodynamic limit leads us to a dynamical system with an additional hysteretic force in the form of a generalized play operator. By using methods from general chaos theory, piecewise-smooth system theory and statistics we investigate the chaotic behavior of the dynamical system for a few spins and also in case of a larger number of spins by calculating bifurcation diagrams, Lyapunov exponents, fractal dimensions and self-averaging properties. We find that the fractal dimensions and the magnetization are in general not self-averaging quantities. We show, how the dynamical properties of the piecewise-smooth system for a large number of spins differs from the system in its thermodynamic limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源