论文标题
混合周期地图的确定性
Definability of mixed period maps
论文作者
论文摘要
我们为整体级别的混合周期空间配备了自然的$ \ mathbb {r} _ {alg} $ - 可定义的分析结构,并证明与积分渐变级别的混合Hodge结构的可接受变化相关的任何时期映射都是在$ \ mathbb {r} _ {An,An,与此结构相关的。结果,我们遵守可允许的正常功能的零基因座是代数。
We equip integral graded-polarized mixed period spaces with a natural $\mathbb{R}_{alg}$-definable analytic structure, and prove that any period map associated to an admissible variation of integral graded-polarized mixed Hodge structures is definable in $\mathbb{R}_{an,exp}$ with respect to this structure. As a consequence we reprove that the zero loci of admissible normal functions are algebraic.