论文标题
在嘈杂的量子计算机上探测多体定位
Probing many-body localization on a noisy quantum computer
论文作者
论文摘要
与相互作用强度相比,当疾病较大时,相互作用颗粒的无序系统表现出局部行为。在没有错误校正的量子计算机上研究这种现象是具有挑战性的,因为即使与热环境的耦合较弱也会破坏大多数定位签名。幸运的是,已知本地运算符的光谱功能包含可以在噪声中生存的特征。在这些光谱中,与热相相比,在低频处的离散峰和软间隙表明定位。在这里,我们介绍了一个具有无序的一维的海森伯格模型,在被困的离子量子计算机上的光谱函数的计算。此外,我们设计了一种误差技术,该技术有效地消除了测量的噪声,从而使定位的明确特征随着疾病的增加而出现。因此,我们表明,光谱函数可以作为当前量子计算机上多体定位的可靠且可扩展的诊断。
A disordered system of interacting particles exhibits localized behavior when the disorder is large compared to the interaction strength. Studying this phenomenon on a quantum computer without error correction is challenging because even weak coupling to a thermal environment destroys most signatures of localization. Fortunately, spectral functions of local operators are known to contain features that can survive the presence of noise. In these spectra, discrete peaks and a soft gap at low frequencies compared to the thermal phase indicate localization. Here, we present the computation of spectral functions on a trapped-ion quantum computer for a one-dimensional Heisenberg model with disorder. Further, we design an error-mitigation technique which is effective at removing the noise from the measurement allowing clear signatures of localization to emerge as the disorder increases. Thus, we show that spectral functions can serve as a robust and scalable diagnostic of many-body localization on the current generation of quantum computers.