论文标题
动态信息流跟踪检测高级持续威胁:随机游戏方法
Dynamic Information Flow Tracking for Detection of Advanced Persistent Threats: A Stochastic Game Approach
论文作者
论文摘要
高级持续威胁(APT)是智能对手的隐形定制攻击。本文介绍了渗透网络系统并妥协针对数据和/或基础架构的恰当的检测。动态信息流动跟踪是一种基于信息跟踪的检测机制,针对APT,可污染系统中的可疑信息,并生成安全分析,以无授权使用污染的数据。在本文中,我们开发了一个分析模型,用于使用信息流跟踪游戏对APT的资源有效检测。该游戏是一种非零和基于转弯的随机游戏,具有非对称信息,因为防守者无法区分传入的流程是恶意的还是良性的,因此只有部分状态观察。我们分析了游戏的平衡,并证明了通过从系统得出的流网络上的最小容量削减问题的解决方案给出了NASH均衡,在该流程中,从执行安全性分析的成本中获得了边缘能力。最后,我们在现实世界数据集上实现算法,以增强具有错误的阴性和假阳性速率的数据,并计算出最佳的防御者策略。
Advanced Persistent Threats (APTs) are stealthy customized attacks by intelligent adversaries. This paper deals with the detection of APTs that infiltrate cyber systems and compromise specifically targeted data and/or infrastructures. Dynamic information flow tracking is an information trace-based detection mechanism against APTs that taints suspicious information flows in the system and generates security analysis for unauthorized use of tainted data. In this paper, we develop an analytical model for resource-efficient detection of APTs using an information flow tracking game. The game is a nonzero-sum, turn-based, stochastic game with asymmetric information as the defender cannot distinguish whether an incoming flow is malicious or benign and hence has only partial state observation. We analyze equilibrium of the game and prove that a Nash equilibrium is given by a solution to the minimum capacity cut set problem on a flow-network derived from the system, where the edge capacities are obtained from the cost of performing security analysis. Finally, we implement our algorithm on the real-world dataset for a data exfiltration attack augmented with false-negative and false-positive rates and compute an optimal defender strategy.