论文标题
一个简单的直接量子模型,该模型没有随机的相假设,并且具有任意初始条件,可以演变为玻尔兹曼分布
A simple direct quantum model which, with no random phase assumptions and with arbitrary initial conditions, evolves to the Boltzman distribution
论文作者
论文摘要
我们考虑M系统(每个系统中的一个电子圆柱体中的电子)均匀排列在一个环上,并具有库仑相互作用。单个n级($ \ lyssim 7 $)系统的精确直接数值时间相关的扰动计算,没有(随机)相位假设,系统显示玻尔兹曼分布。我们利用物理环对称性,并开发几个分层物理方程组,以提高通用性和(计算)速度。鉴于理论量子量统计力学的令人印象深刻的历史,我们的结果似乎令人惊讶,但是我们观察到正确计算正确的物理方程式应模仿性质。
We consider M systems (each an electron in a long square cylinder) uniformly arranged on a ring and with Coulomb interactions. Exact straightforward numerical time-dependent perturbation calculation of a single N-level ($\lesssim 7$) system, with no (random) phase assumptions, system show a Boltzman distribution. We exploit the physical ring symmetry and develop several hierarchical physical equation set so of increasing generality and (computation) speed. Given the impressive history of theoretical quantum-mehanical statistical mechanics, our results might seem surprising, but we observe that accurate calculation of correct physical equations should mimic Nature.