论文标题
使用高分辨率流量数据的短期流量预测
Short-Term Traffic Forecasting Using High-Resolution Traffic Data
论文作者
论文摘要
本文开发了一个数据驱动的工具包,用于使用高分辨率(又称基于事件)的流量数据进行流量预测。这是从城市道路中的固定传感器获得的原始数据。此类原始数据的时间序列表现出从一个时间步骤到下一个时间步长的巨大波动(通常为0.1-1秒的阶)。交通状况的短期预测(未来10-30秒)对于交通操作应用程序(例如自适应信号控制)至关重要。但是,文献中的流量预测工具主要涉及3-5分钟的汇总数据,其中典型的信号周期在2分钟内。这使此类预测在操作层面上毫无用处。为此,我们将流量预测问题建模为矩阵完成问题,其中预测输入使用内核映射到更高的维空间。该公式使我们能够在预测输入和输出之间捕获两个非线性依赖关系,但也使我们能够捕获输入之间的依赖项。这些依赖关系对应于网络中不同位置之间的相关性。我们进一步采用自适应提升来提高训练准确性并捕获数据中的历史模式。使用从阿联酋阿布扎比的现实世界流量网络获得的高分辨率数据验证了所提出的方法的性能。我们的实验结果表明,所提出的方法的表现优于其他最先进的算法。
This paper develops a data-driven toolkit for traffic forecasting using high-resolution (a.k.a. event-based) traffic data. This is the raw data obtained from fixed sensors in urban roads. Time series of such raw data exhibit heavy fluctuations from one time step to the next (typically on the order of 0.1-1 second). Short-term forecasts (10-30 seconds into the future) of traffic conditions are critical for traffic operations applications (e.g., adaptive signal control). But traffic forecasting tools in the literature deal predominantly with 3-5 minute aggregated data, where the typical signal cycle is on the order of 2 minutes. This renders such forecasts useless at the operations level. To this end, we model the traffic forecasting problem as a matrix completion problem, where the forecasting inputs are mapped to a higher dimensional space using kernels. The formulation allows us to capture both nonlinear dependencies between forecasting inputs and outputs but also allows us to capture dependencies among the inputs. These dependencies correspond to correlations between different locations in the network. We further employ adaptive boosting to enhance the training accuracy and capture historical patterns in the data. The performance of the proposed methods is verified using high-resolution data obtained from a real-world traffic network in Abu Dhabi, UAE. Our experimental results show that the proposed method outperforms other state-of-the-art algorithms.