论文标题

使用多元贝叶斯结构时间序列模型估算竞争产品的永久性价格降低的有效性

Estimating the effectiveness of permanent price reductions for competing products using multivariate Bayesian structural time series models

论文作者

Menchetti, Fiammetta, Bojinov, Iavor

论文摘要

意大利超市连锁店的佛罗伦萨分支最近实施了一项策略,该战略永久降低了多种产品类别中众多商店品牌的价格。为了量化这种政策变化的影响,研究人员经常使用合成控制方法来估计因果关系效应时,当一部分单位接受单个持续治疗,其余的不受变化影响。但是,在我们的应用中,由于替代效应,未分配给治疗的竞争者品牌可能会受到干预的影响;更广泛地说,每当一个单位的治疗分配影响另一个单位的结果时,就会发生这种干扰。本文扩展了合成控制方法以适应部分干扰,从而使预定义的组中的干扰允许它们之间的干扰。为了关注一类因果估计,这些因果估计值捕获了对治疗单位和控制单元的影响,我们开发了一个多元贝叶斯结构时间序列模型,用于生成在没有干预措施的情况下会发生的合成控制,从而使我们能够估算我们的新作用。在一项仿真研究中,我们探索了贝叶斯程序的经验特性,并表明即使模型被弄清楚,它也可以达到良好的频繁覆盖范围。我们使用新方法来发表有关影响商店品牌及其直接竞争对手的销售的因果陈述。我们提出的方法是在Causalmbsts R软件包中实现的。

The Florence branch of an Italian supermarket chain recently implemented a strategy that permanently lowered the price of numerous store brands in several product categories. To quantify the impact of such a policy change, researchers often use synthetic control methods for estimating causal effects when a subset of units receive a single persistent treatment, and the rest are unaffected by the change. In our applications, however, competitor brands not assigned to treatment are likely impacted by the intervention because of substitution effects; more broadly, this type of interference occurs whenever the treatment assignment of one unit affects the outcome of another. This paper extends the synthetic control methods to accommodate partial interference, allowing interference within predefined groups but not between them. Focusing on a class of causal estimands that capture the effect both on the treated and control units, we develop a multivariate Bayesian structural time series model for generating synthetic controls that would have occurred in the absence of an intervention enabling us to estimate our novel effects. In a simulation study, we explore our Bayesian procedure's empirical properties and show that it achieves good frequentists coverage even when the model is misspecified. We use our new methodology to make causal statements about the impact on sales of the affected store brands and their direct competitors. Our proposed approach is implemented in the CausalMBSTS R package.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源