论文标题

伪hyperbolic空间中最大表面的高原问题

Plateau Problems for Maximal Surfaces in Pseudo-Hyperbolic Spaces

论文作者

Labourie, François, Toulisse, Jérémy, Wolf, Michael

论文摘要

我们定义并证明存在伪造的签名伪造空间中的间距最大表面的渐近高原问题的独特解决方案(2,n):边界数据是由伪型 - 刺激性空间的无限段的循环给出的,这是正曲线的限制。我们还讨论一个紧凑的高原问题。所需的紧凑性参数依赖于对最大表面高斯升力定义的伪旋晶曲线的分析。

We define and prove the existence of unique solutions of an asymptotic Plateau problem for spacelike maximal surfaces in the pseudo-hyperbolic space of signature (2, n): the boundary data is given by loops on the boundary at infinity of the pseudo-hyperbolic space which are limits of positive curves. We also discuss a compact Plateau problem. The required compactness arguments rely on an analysis of the pseudo-holomorphic curves defined by the Gauss lifts of the maximal surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源