论文标题

2D过渡金属二分法中反应性硫的超级分辨光学图

Super-resolved optical mapping of reactive sulfur-vacancy in 2D transition metal dichalcogenides

论文作者

Zhang, Miao, Lihter, Martina, Macha, Michal, Banjac, Karla, Zhao, Yanfei, Wang, Zhenyu, Zhang, Jing, Comtet, Jean, Lingenfelder, Magalí, Kis, Andras, Radenovic, Aleksandra

论文摘要

过渡金属二分法(TMD)代表具有令人兴奋的特性的全新半导体2D材料。 2D TMD中的缺陷可能会影响其物理和化学特性。但是,缺陷的存在和空间分布的表征在吞吐量或分辨率中受到限制。在这里,我们证明了使用硫醇化学的荧光标记,在2D-TMDS偶联的单分子定位显微镜下,反应性硫缺陷缺陷的大面积映射。我们的方法让人联想到油漆策略,依赖于通过硫醇基团对荧光探针的可逆性物理学对硫化的特异性结合及其间歇发射来应用标记的缺陷的定位,其精确度降低至15 nm。调整荧光团和对接硫醇位点之间的距离使我们能够控制Föster共振能量转移(FRET)过程,并揭示由于局部不规则的晶格结构,诸如晶界和线缺陷之类的较大结构缺陷。我们的方法为2D材料中的非辐射缺陷进行大规模映射提供了简单而快速的替代方法,并为对化学试剂与2D材料之间的相互作用的原位和空间解析的相互作用铺平了道路,这对2D材料的缺陷在水中有缺陷工程的影响。

Transition metal dichalcogenides (TMDs) represent an entire new class of semiconducting 2D materials with exciting properties. Defects in 2D TMDs can crucially affect their physical and chemical properties. However, characterization of the presence and spatial distribution of defects is limited either in throughput or in resolution. Here, we demonstrate large area mapping of reactive sulfur-deficient defects in 2D-TMDs coupling single-molecule localization microscopy with fluorescence labeling using thiol chemistry. Our method, reminiscent of PAINT strategies, relies on the specific binding by reversible physisorption of fluorescent probes to sulfur-vacancies via a thiol group and their intermittent emission to apply localization of the labeled defects with a precision down to 15 nm. Tuning the distance between the fluorophore and the docking thiol site allows us to control Föster Resonance Energy Transfer (FRET) process and reveal large structural defects such as grain boundaries and line defects, due to the local irregular lattice structure. Our methodology provides a simple and fast alternative for large-scale mapping of non-radiative defects in 2D materials and paves the way for in-situ and spatially resolved monitoring of the interaction between chemical agent and the defects in 2D materials that has general implications for defect engineering in aqueous condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源