论文标题
分数布朗运动符合拓扑:带有体积相互作用的球状大分子的统计和拓扑特性
Fractional Brownian motion meets topology: statistical and topological properties of globular macromolecules with volume interactions
论文作者
论文摘要
在本文中,我们研究了配备短范围相互作用的布朗聚合物链的统计和拓扑特性。注意与三维空间中与分形维度$ d_f \ ge 2 $折叠构象的统计属性,这些构型在数值和\ textit {via}均值{via}均值范围的方法中进行了分析。我们的研究的动机是试图模仿崩溃的无结合聚合物环的构象统计数据,这些统计量是在大尺度上以$ d_f = 3 $形成紧凑的层次碎石(CG)。通过调整到分形维度的自我避免的分形路径$ d_f = 3 $,我们可以极大地简化产生紧凑的自我避免自避免自我构象的问题,因为我们从考虑因素中消除了拓扑约束,我们可以极大地简化了拓扑稳定的CG状态。我们利用蒙特卡洛模拟来制备具有各种分形尺寸的肿胀链的平衡合奏。 Flory参数与模拟构象的统计分析的结合,可以推断肿胀链的临界指数对种子链分形维度的依赖性。我们表明,随着$ d_f $的增加,典型的构型变得更加领土,更不打结。打结复杂性的分布,$ p(χ)$对于肿胀链的各种分形维度表明,分形路径的统计特性与体积相互作用之间存在密切的关系。
In the paper we investigate statistical and topological properties of fractional Brownian polymer chains, equipped with the short-range volume interactions. The attention is paid to statistical properties of collapsed conformations with the fractal dimension $D_f\ge 2$ in the three-dimensional space, which are analyzed both numerically and \textit{via} the mean-field Flory approach. Our study is motivated by an attempt to mimic the conformational statistics of collapsed unknotted polymer rings, which are known to form compact hierarchical crumpled globules (CG) with $D_f=3$ at large scales. Replacing the topologically-stabilized CG state by a self-avoiding fractal path adjusted to the fractal dimension $D_f=3$ we tremendously simplify the problem of generating compact self-avoiding conformations since we wash out the topological constraints from the consideration. We make use of the Monte-Carlo simulations to prepare the equilibrium ensemble of swollen chains with various fractal dimensions. A combination of the Flory arguments with statistical analysis of the conformations from simulations allows one to infer the dependence of the critical exponent of the swollen chains on the fractal dimension of the seed chain. We show that with the increase of $D_f$, typical conformations become more territorial and less knotted. Distributions of the knot complexity, $P(χ)$ for various fractal dimensions of the swollen chains suggest a close relationship between statistical and topological properties of fractal paths with volume interactions.