论文标题
通过基于节点的机器学习来识别神经元极性
Identification of Neuronal Polarity by Node-Based Machine Learning
论文作者
论文摘要
确定神经网络中信号流的方向是理解活体大脑的复杂信息动态的最重要阶段之一。使用分布在果蝇大脑不同区域的213个投影神经元的数据集,我们开发了一种强大的机器学习算法:基于节点的神经元的极性标识符(NPIN)。所提出的模型仅通过节点信息训练,其中包括SOMA特征(其中包含从给定节点到SOMA的空间信息)和局部特征(其中包含给定节点的形态信息)。在包括节点极性之间的空间相关性之后,我们的NPIN为神经元极性的分类提供了极高的精度(> 96.0%),即使对于具有两个以上的树突状/轴突簇的复杂神经元也是如此。最后,我们进一步应用NPIN来分类吹蝇的神经元极性,该神经元数据可用。我们的结果表明,NPIN是识别昆虫神经元极性并绘制出大脑神经网络中信号流的强大工具。
Identify the directions of signal flows in neural networks is one of the most important stages for understanding the intricate information dynamics of a living brain. Using a dataset of 213 projection neurons distributed in different regions of Drosophila brain, we develop a powerful machine learning algorithm: node-based polarity identifier of neurons (NPIN). The proposed model is trained by nodal information only and includes both Soma Features (which contain spatial information from a given node to a soma) and Local Features (which contain morphological information of a given node). After including the spatial correlations between nodal polarities, our NPIN provided extremely high accuracy (>96.0%) for the classification of neuronal polarity, even for complex neurons with more than two dendrite/axon clusters. Finally, we further apply NPIN to classify the neuronal polarity of the blowfly, which has much less neuronal data available. Our results demonstrate that NPIN is a powerful tool to identify the neuronal polarity of insects and to map out the signal flows in the brain's neural networks.