论文标题
分析一些具有快速吸附和快速表面化学的异质催化模型
Analysis of some heterogeneous catalysis models with fast sorption and fast surface chemistry
论文作者
论文摘要
我们研究了通过快速吸附(即\ \ \质量之间的质量交换和反应器的催化表面之间的质量交换)和针对原型化学反应器的快速表面化学性质的尺寸分析产生的极限模型。对于在正常质量通量上具有线性边界条件的最终反应扩散系统,但与此同时,我们在浓度本身上的非线性边界条件,我们提供了分析属性,例如局部时间及时的及时性,阳性和全球在$ \ mathrm {w}^(w}^{(1,2)} _ $ p(j p)中,类$ \ mathrm {c}^{(1 +α,2 +2α)}的经典Hölder解决方案(\ edline j \ times j \ times \overlineΩ)$。利用该模型是基于热力学原理的,我们进一步显示了与质量保护和熵原理有关的先验界限。
We investigate limit models resulting from a dimensional analysis of quite general heterogeneous catalysis models with fast sorption (i.e.\ exchange of mass between the bulk phase and the catalytic surface of a reactor) and fast surface chemistry for a prototypical chemical reactor. For the resulting reaction-diffusion systems with linear boundary conditions on the normal mass fluxes, but at the same time nonlinear boundary conditions on the concentrations itself, we provide analytic properties such as local-in time well-posedness, positivity and global existence of strong solutions in the class $\mathrm{W}^{(1,2)}_p(J \times Ω; \mathbb{R}^N)$, and of classical Hölder solutions in the class $\mathrm{C}^{(1+α, 2 + 2α)}(\overline J \times \overlineΩ)$. Exploiting that the model is based on thermodynamic principles, we further show a priori bounds related to mass conservation and the entropy principle.