论文标题
用于域概括和适应的特征对齐和恢复
Feature Alignment and Restoration for Domain Generalization and Adaptation
论文作者
论文摘要
对于域概括(DG)和无监督的域适应性(UDA),已广泛探索跨域特征对齐,以拉动不同域的特征分布,以学习域名不变表示。但是,特征对齐方式是一般任务 - 可能导致功能表示的歧视能力的退化,从而阻碍了高性能。在本文中,我们提出了一个统一的框架,称为特征对齐和恢复(FAR),以同时确保网络的高概括和歧视能力,以实现有效的DG和UDA。具体而言,我们通过对齐专注选择的特征的分布来减少其差异来执行跨域的特征对齐(FA)。为了确保高度歧视,我们提出了功能修复(FR)操作,以将与任务相关的功能从残差信息中提取,并使用它们来补偿对齐功能。为了更好地解开,我们在FR步骤中强制执行双重排名熵损失约束,以鼓励与任务相关和任务级别的特征分开。对多个分类基准的广泛实验证明了我们对域概括和无监督域适应的远面框架的高性能和强烈的概括。
For domain generalization (DG) and unsupervised domain adaptation (UDA), cross domain feature alignment has been widely explored to pull the feature distributions of different domains in order to learn domain-invariant representations. However, the feature alignment is in general task-ignorant and could result in degradation of the discrimination power of the feature representation and thus hinders the high performance. In this paper, we propose a unified framework termed Feature Alignment and Restoration (FAR) to simultaneously ensure high generalization and discrimination power of the networks for effective DG and UDA. Specifically, we perform feature alignment (FA) across domains by aligning the moments of the distributions of attentively selected features to reduce their discrepancy. To ensure high discrimination, we propose a Feature Restoration (FR) operation to distill task-relevant features from the residual information and use them to compensate for the aligned features. For better disentanglement, we enforce a dual ranking entropy loss constraint in the FR step to encourage the separation of task-relevant and task-irrelevant features. Extensive experiments on multiple classification benchmarks demonstrate the high performance and strong generalization of our FAR framework for both domain generalization and unsupervised domain adaptation.