论文标题
0阶的谐振动力学伪数算子
Dynamics of resonances for 0th order pseudodifferential operators
论文作者
论文摘要
我们研究了0阶伪差算子$ p(s)$的分析扰动的共振动态。特别是,我们证明了$ p = p(0)$的嵌入式特征值$ p(s)$的共鸣的费米黄金法则。我们还研究了$ p(t)= p+itδ$的特征值的动力学,因为特征值汇聚为$ p $的简单特征值。我们考虑满足自然动力学假设的0阶假差异操作员,并用作内部波的微局部模型。
We study the dynamics of resonances of analytic perturbations of 0th order pseudodifferential operators $P(s)$. In particular, we prove a Fermi golden rule for resonances of $P(s)$ at embedded eigenvalues of $P=P(0)$. We also study the dynamics of eigenvalues of $P(t)=P+itΔ$ as the eigenvalues converge to simple eigenvalues of $P$. The 0th order pseudodifferential operators we consider satisfy natural dynamical assumptions and are used as microlocal models of internal waves.