论文标题
CBIR的相关性反馈得到了改善
An Improved Relevance Feedback in CBIR
论文作者
论文摘要
基于内容的图像检索中的相关反馈是一种使用表演反馈来改善自身的方法。先前的工作使用功能重新加权和分类技术作为相关反馈方法。本文展示了对先前方法的新颖补充,以进一步提高检索准确性。除所有这些外,本文还展示了一个新颖的想法,甚至可以从相关反馈信息中提高0次迭代的检索准确性。
Relevance Feedback in Content-Based Image Retrieval is a method where the feedback of the performance is being used to improve itself. Prior works use feature re-weighting and classification techniques as the Relevance Feedback methods. This paper shows a novel addition to the prior methods to further improve the retrieval accuracy. In addition to all of these, the paper also shows a novel idea to even improve the 0-th iteration retrieval accuracy from the information of Relevance Feedback.