论文标题
使用虚拟人类构建合成数据集的方法
Methodology for Building Synthetic Datasets with Virtual Humans
论文作者
论文摘要
深度学习方法的最新进展提高了面部检测和识别系统的性能。这些模型的准确性取决于训练数据中提供的变异范围。创建一个代表实际面孔的所有变化的数据集是不可行的,因为对数据质量的控制随数据集的大小而降低。数据的可重复性是另一个挑战,因为不可能精确地重新创建实验室之外的“现实世界”采集条件。在这项工作中,我们探索了一个框架,以合成生成面部数据,以作为工具链的一部分,以生成对面部和环境变化具有高度控制的非常大的面部数据集。这样的大数据集可用于改进深层神经网络的针对性培训。特别是,我们利用一个3D可变形的面部模型,用于在100个合成身份的数据集中渲染多个2D图像,从而完全控制图像变化,例如姿势,照明和背景。
Recent advances in deep learning methods have increased the performance of face detection and recognition systems. The accuracy of these models relies on the range of variation provided in the training data. Creating a dataset that represents all variations of real-world faces is not feasible as the control over the quality of the data decreases with the size of the dataset. Repeatability of data is another challenge as it is not possible to exactly recreate 'real-world' acquisition conditions outside of the laboratory. In this work, we explore a framework to synthetically generate facial data to be used as part of a toolchain to generate very large facial datasets with a high degree of control over facial and environmental variations. Such large datasets can be used for improved, targeted training of deep neural networks. In particular, we make use of a 3D morphable face model for the rendering of multiple 2D images across a dataset of 100 synthetic identities, providing full control over image variations such as pose, illumination, and background.