论文标题

以稀疏信息形式估算神经网络的模型不确定性

Estimating Model Uncertainty of Neural Networks in Sparse Information Form

论文作者

Lee, Jongseok, Humt, Matthias, Feng, Jianxiang, Triebel, Rudolph

论文摘要

我们提出了深神经网络(DNN)模型不确定性的稀疏表示,其中参数后验与多元正态分布(MND)的反向公式(也称为信息形式)近似。我们工作的关键见解是信息矩阵,即协方差矩阵的倒数在其频谱中往往稀疏。因此,可以有效利用较低级别近似值(LRA)等维度降低技术。为此,我们开发了一种新型的稀疏算法并得出了一种具有成本效益的分析采样器。结果,我们证明了信息形式可以可缩减地代表DNN中的模型不确定性。我们对各种基准的详尽理论分析和经验评估表明,我们方法对当前方法的竞争力。

We present a sparse representation of model uncertainty for Deep Neural Networks (DNNs) where the parameter posterior is approximated with an inverse formulation of the Multivariate Normal Distribution (MND), also known as the information form. The key insight of our work is that the information matrix, i.e. the inverse of the covariance matrix tends to be sparse in its spectrum. Therefore, dimensionality reduction techniques such as low rank approximations (LRA) can be effectively exploited. To achieve this, we develop a novel sparsification algorithm and derive a cost-effective analytical sampler. As a result, we show that the information form can be scalably applied to represent model uncertainty in DNNs. Our exhaustive theoretical analysis and empirical evaluations on various benchmarks show the competitiveness of our approach over the current methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源