论文标题
驱动边界层的输入输出框架
Input-output framework for actuated boundary layers
论文作者
论文摘要
这项工作将输入输出方法扩展到了使用实验流控制研究中常见的执行器操纵的壁结合剪切流的研究。特别是,我们适应了这个强大的分析框架,以研究对指定的几何执行模式(例如,不同的等离子体执行器)的流动响应,该模式可以在不同的时间输入信号范围内应用。例如,经常研究的稳态(时间平均)流动响应对应于我们的建模框架中的步骤响应的叠加。该方法利用传输函数表示的线性性来构建驱动的流场,作为对构成驱动模型的变化强度的点源的加权叠加。我们首先通过与使用介电 - 级 - 栏排出的血浆执行器在狭窄的放电模式下作用的过渡边界层的数值和实验研究来验证提出的方法。该方法显示出从测试的等离子体执行器构型下游观察到的流向速度场和涡流结构。然后,我们证明该方法与边界层的稳态响应提供了更好的一致性,这些响应是由在Spanwise和Serpentine几何形状上排列的对称等离子体执行器阵列的驱动。这些结果表明,这种扩展对广泛使用的输入输出框架的实用性在分析某些驱动方式的效果方面已显示出在流动操纵策略中减少阻力的效果。这种分析方法的一个重要好处是,与其在广泛参数研究中使用相关的低计算成本,使用实验或高保真模拟将过于良性。
This work extends the input-output approach to the study of wall-bounded shear flows manipulated using actuators common in experimental flow control studies. In particular, we adapt this powerful analytical framework to investigate the flow response to specified geometric actuation patterns (e.g., different plasma actuators) that can be applied over a range of different temporal input signals. For example, the commonly studied steady-state (time-averaged) flow response corresponds to a superposition of step responses in our modeling framework. The approach takes advantage of the linearity of the transfer function representation to construct the actuated flow field as a weighted superposition of the flow responses to point sources of varying intensity comprising the actuation model. We first validate the proposed method through comparisons with numerical and experimental studies of the time-averaged behavior of a transitional boundary layer actuated using a dielectric-barrier discharge plasma actuator operating in constricted discharge mode. The method is shown to reproduce the streamwise velocity field and the vortical structures observed downstream from the tested plasma actuator configurations. We then demonstrate that the method provides even better agreement with the steady-state response of the boundary layer subject to actuation from arrays of symmetric plasma actuators arranged in both spanwise and serpentine geometries. These results indicate the utility of this extension to the widely used input-output framework in analyzing the effects of certain actuation modalities that have shown promise in flow manipulation strategies for drag reduction. An important benefit of this analytical method is the low computational cost associated with its use in extensive parametric studies that would be cost-prohibitive using experiments or high-fidelity simulations.