论文标题

用于医疗应用的二进制神经网络内存中的电阻RAM实施

In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications

论文作者

Penkovsky, Bogdan, Bocquet, Marc, Hirtzlin, Tifenn, Klein, Jacques-Olivier, Nowak, Etienne, Vianello, Elisa, Portal, Jean-Michel, Querlioz, Damien

论文摘要

深度学习的出现已经大大加速了机器学习的发展。然而,深度神经网络在边缘的部署受其高记忆和能耗要求的限制。借助新的记忆技术,新兴的二元神经网络(BNN)有望减少即将到来的机器学习硬件生成的能源影响,从而使机器在边缘设备上学习并避免通过网络上的数据传输。在这项工作中,在采用混合CMOS -HAFNIUM氧化物抵抗记忆技术提出了实施之后,我们建议将BNN应用于生物医学信号(例如心电图和脑电图),保持准确性水平和降低记忆要求。当整个网络对整个网络进行二进制并仅将分类器部分二进制时,我们研究了内存准确性的权衡。我们还讨论了这些结果如何转化为Imagenet任务上的面向边缘的Mobilenet〜V1神经网络。这项研究的最终目标是实现智能自主医疗保健设备。

The advent of deep learning has considerably accelerated machine learning development. The deployment of deep neural networks at the edge is however limited by their high memory and energy consumption requirements. With new memory technology available, emerging Binarized Neural Networks (BNNs) are promising to reduce the energy impact of the forthcoming machine learning hardware generation, enabling machine learning on the edge devices and avoiding data transfer over the network. In this work, after presenting our implementation employing a hybrid CMOS - hafnium oxide resistive memory technology, we suggest strategies to apply BNNs to biomedical signals such as electrocardiography and electroencephalography, keeping accuracy level and reducing memory requirements. We investigate the memory-accuracy trade-off when binarizing whole network and binarizing solely the classifier part. We also discuss how these results translate to the edge-oriented Mobilenet~V1 neural network on the Imagenet task. The final goal of this research is to enable smart autonomous healthcare devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源