论文标题
在紧密环境中导航的分布式多车协调算法
A Distributed Multi-Vehicle Coordination Algorithm for Navigation in Tight Environments
论文作者
论文摘要
这项工作提出了一种基于非线性模型预测控制(NMPC)和双重分解的多车协调的分布式方法。我们的方法使车辆可以通过对每辆车的形状进行多功能描述,并将避免碰撞作为双重优化问题,在狭窄的空间(例如,繁忙的高速公路车道或停车场)中协调。我们的方法可容纳异类车辆团队(即具有不同聚焦形状和动态型号的车辆可以成为同一团队的一部分)。我们的方法使车辆可以以分布式方式共享其意图,而无需依靠中央协调员,并有效地为车辆提供无冲突的轨迹。此外,我们的方法将单个车辆的轨迹优化从其避免碰撞目标中提高,从而增强了该方法的可扩展性并允许一个人利用并行硬件体系结构。所有这些功能对于动态环境中系统以高频速率运行的车辆应用尤其重要。为了验证我们的方法,我们将其应用于车辆应用中,即,连接车辆团队的自动驾驶汽车合并以形成排。我们将设计与集中式NMPC设计进行比较,以显示所提出的分布式算法的计算益处。
This work presents a distributed method for multi-vehicle coordination based on nonlinear model predictive control (NMPC) and dual decomposition. Our approach allows the vehicles to coordinate in tight spaces (e.g., busy highway lanes or parking lots) by using a polytopic description of each vehicle's shape and formulating collision avoidance as a dual optimization problem. Our method accommodates heterogeneous teams of vehicles (i.e., vehicles with different polytopic shapes and dynamic models can be part of the same team). Our method allows the vehicles to share their intentions in a distributed fashion without relying on a central coordinator and efficiently provides collision-free trajectories for the vehicles. In addition, our method decouples the individual-vehicles' trajectory optimization from their collision-avoidance objectives enhancing the scalability of the method and allowing one to exploit parallel hardware architectures. All these features are particularly important for vehicular applications, where the systems operate at high-frequency rates in dynamic environments. To validate our method, we apply it in a vehicular application, that is, the autonomous lane-merging of a team of connected vehicles to form a platoon. We compare our design with the centralized NMPC design to show the computational benefits of the proposed distributed algorithm.