论文标题

使用机器学习的恒星光谱插值

Stellar Spectral Interpolation using Machine Learning

论文作者

Sharma, Kaushal, Singh, Harinder P., Gupta, Ranjan, Kembhavi, Ajit, Vaghmare, Kaustubh, Shi, Jianrong, Zhao, Yongheng, Zhang, Jiannan, Wu, Yue

论文摘要

理论上的恒星光谱依赖于根据我们对恒星内饰中的物理定律的理解计算出的模型恒星气氛。这些模型,再加上原子和分子线数据库,用于生成理论恒星光谱文库(SSLS),这些谱图(SSLS)在任何理想的分辨率下的大气参数(温度,表面重力,丰度)的常规网格上包含恒星光谱。另一类的SSL被称为经验光谱库。这些包含有限分辨率的观察到的光谱。 SSL在推导恒星和恒星种群的特性中起着至关重要的作用。理论和经验库都受到参数空间的覆盖范围有限。通过在可用参数空间的网格中插值来为特定的大气参数集生成光谱,在一定程度上克服了这一限制。在这项工作中,我们使用机器学习算法在光学区域中介绍了一种通用的光谱插值方法,这些算法是通用的,易于适应任何SSL,而模型参数没有太大变化,并且计算便宜。我们使用两种机器学习技术:随机森林(RF)和人工神经网络(ANN),并在Miles库中训练模型。我们将经过训练的模型应用于CFLIB的光谱进行测试,并表明这两个模型的性能是可比的。我们表明,这两种模型都比现有的基于多项式的插值和高斯径向基函数(RBF)插值的方法更好。

Theoretical stellar spectra rely on model stellar atmospheres computed based on our understanding of the physical laws at play in the stellar interiors. These models, coupled with atomic and molecular line databases, are used to generate theoretical stellar spectral libraries (SSLs) comprising of stellar spectra over a regular grid of atmospheric parameters (temperature, surface gravity, abundances) at any desired resolution. Another class of SSLs is referred to as empirical spectral libraries; these contain observed spectra at limited resolution. SSLs play an essential role in deriving the properties of stars and stellar populations. Both theoretical and empirical libraries suffer from limited coverage over the parameter space. This limitation is overcome to some extent by generating spectra for specific sets of atmospheric parameters by interpolating within the grid of available parameter space. In this work, we present a method for spectral interpolation in the optical region using machine learning algorithms that are generic, easily adaptable for any SSL without much change in the model parameters, and computationally inexpensive. We use two machine learning techniques, Random Forest (RF) and Artificial Neural Networks (ANN), and train the models on the MILES library. We apply the trained models to spectra from the CFLIB for testing and show that the performance of the two models is comparable. We show that both the models achieve better accuracy than the existing methods of polynomial based interpolation and the Gaussian radial basis function (RBF) interpolation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源