论文标题
朝着自适应底栖栖息地映射
Towards Adaptive Benthic Habitat Mapping
论文作者
论文摘要
自主水下车辆(AUV)越来越多地用于支持科学研究和监测研究。一种这样的应用是在底栖栖息地映射中,这些车辆收集海底图像,以补充使用声纳收集的宽尺度测深数据。使用这两个数据源,可以学习遥感的声学数据与采样图像之间的关系,从而创建一个栖息地模型。由于要映射的区域通常很大,并且收集海底图像的AUV系统只能从调查区域的一小部分中进行采样,因此每次部署的信息应最大化。本文说明了如何使用栖息地模型本身来计划更有效的AUV调查,以确定在哪里收集进一步样本以大多数改善栖息地模型。当给出广泛的测深数据时,贝叶斯神经网络用于预测视觉衍生的栖息地类。该网络还可以估计与预测相关的不确定性,该预测可以被解构为其核心(数据)和认知(模型)组件。我们证明了如何利用这些结构化不确定性估计来用较少的样品改善模型。这种对底栖调查的适应性方法有可能通过优先提出进一步的抽样工作来降低成本。我们使用AUV收集的数据在澳大利亚塔斯马尼亚州的海上礁石上收集的数据说明了拟议方法的有效性。
Autonomous Underwater Vehicles (AUVs) are increasingly being used to support scientific research and monitoring studies. One such application is in benthic habitat mapping where these vehicles collect seafloor imagery that complements broadscale bathymetric data collected using sonar. Using these two data sources, the relationship between remotely-sensed acoustic data and the sampled imagery can be learned, creating a habitat model. As the areas to be mapped are often very large and AUV systems collecting seafloor imagery can only sample from a small portion of the survey area, the information gathered should be maximised for each deployment. This paper illustrates how the habitat models themselves can be used to plan more efficient AUV surveys by identifying where to collect further samples in order to most improve the habitat model. A Bayesian neural network is used to predict visually-derived habitat classes when given broad-scale bathymetric data. This network can also estimate the uncertainty associated with a prediction, which can be deconstructed into its aleatoric (data) and epistemic (model) components. We demonstrate how these structured uncertainty estimates can be utilised to improve the model with fewer samples. Such adaptive approaches to benthic surveys have the potential to reduce costs by prioritizing further sampling efforts. We illustrate the effectiveness of the proposed approach using data collected by an AUV on offshore reefs in Tasmania, Australia.