论文标题

图像情绪转移

Image Sentiment Transfer

论文作者

Chen, Tianlang, Xiong, Wei, Zheng, Haitian, Luo, Jiebo

论文摘要

在这项工作中,我们介绍了一项重要但仍未开发的研究任务 - 图像情感转移。与经过充分研究的其他相关任务相比,例如图像到图像翻译和图像样式转移,将图像的情感转移更具挑战性。给定输入图像,传递每个包含对象情绪的情感的规则可以完全不同,从而使现有的方法通过单个参考图像执行全局图像传输的现有方法不足以实现令人满意的性能。在本文中,我们提出了一个有效且灵活的框架,该框架在对象级别执行图像情感转移。它首先检测到对象并提取其像素级掩码,然后执行以对象的多个参考图像为指导的对象级情感转移。对于核心对象级别的情感转移,我们提出了一种新颖的情感 - 甘(Sentigan)。全球图像级别和本地对象级的监督都遭到训练Sentigan。更重要的是,采用与内容一致性步骤合作的有效内容分解损失可更好地解散输入图像的残留情绪相关信息。对我们创建的面向对象的VSO数据集进行了广泛的定量和定性实验,以证明所提出的框架的有效性。

In this work, we introduce an important but still unexplored research task -- image sentiment transfer. Compared with other related tasks that have been well-studied, such as image-to-image translation and image style transfer, transferring the sentiment of an image is more challenging. Given an input image, the rule to transfer the sentiment of each contained object can be completely different, making existing approaches that perform global image transfer by a single reference image inadequate to achieve satisfactory performance. In this paper, we propose an effective and flexible framework that performs image sentiment transfer at the object level. It first detects the objects and extracts their pixel-level masks, and then performs object-level sentiment transfer guided by multiple reference images for the corresponding objects. For the core object-level sentiment transfer, we propose a novel Sentiment-aware GAN (SentiGAN). Both global image-level and local object-level supervisions are imposed to train SentiGAN. More importantly, an effective content disentanglement loss cooperating with a content alignment step is applied to better disentangle the residual sentiment-related information of the input image. Extensive quantitative and qualitative experiments are performed on the object-oriented VSO dataset we create, demonstrating the effectiveness of the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源