论文标题
从深度学习中发现符号模型
Discovering Symbolic Models from Deep Learning with Inductive Biases
论文作者
论文摘要
我们通过引入强诱导偏见来开发一种通用的方法来提炼学习深模型的符号表示。我们专注于图形神经网络(GNNS)。该技术的工作如下:我们首先鼓励在监督环境中训练GNN时稀疏的潜在表示,然后我们将符号回归应用于学习模型的组成部分,以提取明确的物理关系。我们发现可以从神经网络中提取正确的已知方程,包括力量法律和哈密顿量。然后,我们将方法应用于非平凡的宇宙学示例 - 详细的暗物质模拟,并发现一种新的分析公式,该公式可以从附近宇宙结构的质量分布中预测暗物质的浓度。使用我们的技术从GNN中提取的符号表达式也比GNN本身更好地推广到分布数据。我们的方法提供了解释神经网络并从他们学习的表现中发现新颖的物理原理的替代方向。
We develop a general approach to distill symbolic representations of a learned deep model by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The technique works as follows: we first encourage sparse latent representations when we train a GNN in a supervised setting, then we apply symbolic regression to components of the learned model to extract explicit physical relations. We find the correct known equations, including force laws and Hamiltonians, can be extracted from the neural network. We then apply our method to a non-trivial cosmology example-a detailed dark matter simulation-and discover a new analytic formula which can predict the concentration of dark matter from the mass distribution of nearby cosmic structures. The symbolic expressions extracted from the GNN using our technique also generalized to out-of-distribution data better than the GNN itself. Our approach offers alternative directions for interpreting neural networks and discovering novel physical principles from the representations they learn.