论文标题

在非交通空间中潜在的井中,堵塞的granullar培养基中的全身性刘易斯 - 里森菲尔德不变性

Generalized Lewis-Riesenfeld invariance for dynamical effective mass in jammed granullar media under a potential well in non-commutative space

论文作者

Biswas, Kalpana, Saha, Jyoti Prasad, Patra, Pinaki

论文摘要

对小行星带(Kuiper Belt)的考虑,作为一种危险的粒状培养基建立了凝结物理物理学和天体物理学之间的桥梁。它开辟了一个实验可能性,以确定非交通时空的变形参数。可以简化Kuiper带的动力学,作为在重力井下堵塞的颗粒介质动力学有效质量的动力学。旁边是,如果人们认为时空是非交通性的,那么可以完成一个实验模型,用于确定非交通时空的变形参数。 通常,该模型的本本征函数和不变性通常是一个棘手的问题。我们利用刘易斯 - 里森菲尔德不变方法来确定该时间依赖的量子系统的不变性。在本文中,我们表明,该系统中存在一系列广义时间依赖性的刘易斯 - 里森菲尔德不变式操作员,并在非共同空间的潜在孔隙中具有动态有效质量。为了保持讨论相当一般,我们考虑了位置位置和动量摩托车的非交换性。由于,最多只有时间依赖的相位因子,因此不变操作员的本征函数将满足系统的时间依赖性的schrödinger方程,以实现该系统的时间依赖性哈密顿量,因此不变的操作员的构建公平地构建了问题,以数学上解决了问题,可以利用其结果来证明一个经验。

Consideration of the asteroid belt (Kuiper belt) as a jammed-granular media establishes a bridge between condensed matter physics and astrophysics. It opens up an experimental possibility to determine the deformation parameters for noncommutative space-time. Dynamics of the Kuiper belt can be simplified as dynamics of a dynamical effective mass for a jammed granular media under a gravitational well. Alongside, if one considers the space-time to be noncommutative, then an experimental model for the determination of the deformation parameters for noncommutative space-time can be done. The construction of eigenfunctions and invariance for this model is in general a tricky problem. We have utilized the Lewis-Riesenfeld invariant method to determine the invariance for this time-dependent quantum system. In this article, we have shown that a class of generalized time-dependent Lewis-Riesenfeld invariant operators exist for the system with dynamical effective mass in jammed granular media under a potential well in noncommutative space. To keep the discussion fairly general, we have considered both position-position and momentum-momentum noncommutativity. Since, up to a time-dependent phase-factor, the eigenfunctions of the invariant operator will satisfy the time-dependent Schrödinger equation for the time-dependent Hamiltonian of the system, the construction of the invariant operator fairly solve the problem mathematically, the results of which can be utilized to demonstrate an experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源