论文标题
液体火箭发动机的瞬态控制的增强学习方法
A Reinforcement Learning Approach for Transient Control of Liquid Rocket Engines
论文作者
论文摘要
如今,液态火箭发动机在最接近稳定的操作条件下使用闭环控制。传统上,由于高度非线性系统动力学,瞬态相的控制在开环中进行。这种情况不令人满意,特别是对于可重复使用的引擎而言。由于外部干扰或发动机组件的变性,开环控制系统无法提供最佳的发动机性能。在本文中,我们研究了一种深入的加固学习方法,以最佳控制通用气体发动机的连续启动阶段。结果表明,学到的策略可以达到不同的稳态操作点,并令人信服地适应不断变化的系统参数。包括与精心调整的开环序列和PID控制器的定量比较。深度强化学习控制器实现了最高的性能,并且只需要最少的计算工作来计算控制动作,这比需要在线优化的方法(例如模型预测性控制)是一个很大的优势。控制。
Nowadays, liquid rocket engines use closed-loop control at most near steady operating conditions. The control of the transient phases is traditionally performed in open-loop due to highly nonlinear system dynamics. This situation is unsatisfactory, in particular for reusable engines. The open-loop control system cannot provide optimal engine performance due to external disturbances or the degeneration of engine components over time. In this paper, we study a deep reinforcement learning approach for optimal control of a generic gas-generator engine's continuous start-up phase. It is shown that the learned policy can reach different steady-state operating points and convincingly adapt to changing system parameters. A quantitative comparison with carefully tuned open-loop sequences and PID controllers is included. The deep reinforcement learning controller achieves the highest performance and requires only minimal computational effort to calculate the control action, which is a big advantage over approaches that require online optimization, such as model predictive control. control.