论文标题

自由的谎言代数方法,用于弯曲校正到平坦的时空

A free Lie algebra approach to curvature corrections to flat space-time

论文作者

Gomis, Joaquim, Kleinschmidt, Axel, Roest, Diederik, Salgado-Rebolledo, Patricio

论文摘要

我们研究了一种系统的方法,以在曲率尺度上逐步订购平面时订单的等轴测代数曲率校正。庞加莱代数扩展到一个自由的谎言代数,并具有不再通勤的广义提升和翻译。附加发电机满足级别排序并在该顺序编码曲率校正。这最终导致了一个无限维代数,我们称之为poincaré$ {} _ \ infty $,我们表明它包含一个(a)ds商。我们讨论了该无限维代数的非线性实现,并基于它构建了粒子作用。后者产生一个测量方程,其中包括(a)每个顺序的ds曲率校正。

We investigate a systematic approach to include curvature corrections to the isometry algebra of flat space-time order-by-order in the curvature scale. The Poincaré algebra is extended to a free Lie algebra, with generalised boosts and translations that no longer commute. The additional generators satisfy a level-ordering and encode the curvature corrections at that order. This eventually results in an infinite-dimensional algebra that we refer to as Poincaré${}_\infty$, and we show that it contains among others an (A)dS quotient. We discuss a non-linear realisation of this infinite-dimensional algebra, and construct a particle action based on it. The latter yields a geodesic equation that includes (A)dS curvature corrections at every order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源