论文标题

关于功能字段中线性复发的生长

On the growth of linear recurrences in function fields

论文作者

Fuchs, Clemens, Heintze, Sebastian

论文摘要

令$(g_n)_ {n = 0}^{\ infty} $为具有功率总和表示$ g_n = a_1(n)α_1^n + \ cdots + cdots + a_t(n)α_t^n $的非分级线性复发序列。在本文中,我们将证明众所周知的结果的功能字段类似物在数字字段中,在某些非限制条件下,对于$ n $,对于不平等的$ \ vert g_n \ vert g_n \ vert \ geq \ weft(\ max_ = 1,j = 1,\ ldots,\ ldots,\ ldots,t} 真的。

Let $ (G_n)_{n=0}^{\infty} $ be a non-degenerate linear recurrence sequence with power sum representation $ G_n = a_1(n) α_1^n + \cdots + a_t(n) α_t^n $. In this paper we will prove a function field analogue of the well known result that in the number field case, under some non-restrictive conditions, for $ n $ large enough the inequality $ \vert G_n\vert \geq \left( \max_{j=1,\ldots,t} \vert α_j\vert \right)^{n(1-\varepsilon)} $ holds true.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源