论文标题

量子计算的半监督时间序列分类方法

Semi-supervised time series classification method for quantum computing

论文作者

Yarkoni, Sheir, Kleshchonok, Andrii, Dzerin, Yury, Neukart, Florian, Hilbert, Marc

论文摘要

在本文中,我们开发了使用量子计算:重建和分类解决与时间序列(TS)分析相关的两个问题的方法。我们制定了从训练数据集中重建给定TS作为无约束的二进制优化(QUBO)问题的任务,量子退火器和Gate-Model量子处理器都可以解决。我们通过离散TS并将重建转换为设定盖问题来实现这一目标,从而使我们能够执行一种单一的重建方法。使用重建问题的解决方案,我们展示了如何扩展此方法以执行TS数据的半监督分类。我们提出结果,表明我们的方法与当前的半监督和无监督分类技术具有竞争力,但使用的数据比经典技术少。

In this paper we develop methods to solve two problems related to time series (TS) analysis using quantum computing: reconstruction and classification. We formulate the task of reconstructing a given TS from a training set of data as an unconstrained binary optimization (QUBO) problem, which can be solved by both quantum annealers and gate-model quantum processors. We accomplish this by discretizing the TS and converting the reconstruction to a set cover problem, allowing us to perform a one-versus-all method of reconstruction. Using the solution to the reconstruction problem, we show how to extend this method to perform semi-supervised classification of TS data. We present results indicating our method is competitive with current semi- and unsupervised classification techniques, but using less data than classical techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源